8-2 Factoring by GCF

Recall that the Distributive Property states that $a b+a c=a(b+c)$. The Distributive Property allows you to "factor" out the GCF of the terms in a polynomial to write a factored form of the polynomial.

A polynomial is in its factored form when it is written as a product of monomials and polynomials that cannot be factored further. The polynomial $2(3 x-4 x)$ is not fully factored because the terms in the parentheses have a common factor of x.

8-2 Factoring by GCF

Example 1A: Factoring by Using the GCF

http: / /my.hrw.com/math11/math06_07/nsmedia/lesson_videos/alg1/play er.html?contentSrc=6366/6366.xml
Factor each polynomial. Check your answer.
$2 x^{2}-4$

$$
\begin{aligned}
& 2 x^{2}=2 \\
& 4=\begin{array}{l}
2 \\
2
\end{array} \cdot 2 \\
& 2
\end{aligned}, ~ \begin{gathered}
2 \\
2 x^{2}-(2 \cdot 2) \\
2\left(x^{2}-2\right)
\end{gathered}
$$

$$
x \cdot x \quad \text { Find the GCF. }
$$

The GCF of $2 x^{2}$ and 4 is 2 .
Write terms as products using the GCF as a factor.
Use the Distributive Property to factor out the GCF.
Multiply to check your answer.
The product is the original polynomial.

8-2 Factoring by GCF

Example 1B: Factoring by Using the GCF

 Factor each polynomial. Check your answer.$$
8 x^{3}-4 x^{2}-16 x
$$

$$
8 x^{3}=2 \cdot 2 \cdot 2 \cdot \quad x \cdot x \cdot x \text { Find the GCF }
$$

$$
4 x^{2}=2 \cdot \mid 2 \cdot \quad x \cdot x
$$

The GCF of $8 x^{3}, 4 x^{2}$, and $16 x$ is $4 x$.
2. $2 \cdot x=4 x$ Write terms as products using
$2 x^{2}(4 x)-x(4 x)-4(4 x)$
$4 x\left(2 x^{2}-x-4\right)$ the GCF as a factor.
Use the Distributive Property to factor out the GCF.
Check $4 x\left(2 x^{2}-x-4\right)$

$$
8 x^{3}-4 x^{2}-16 x
$$

The product is the original polynomials.

8-2 Factoring by GCF

Example 1C: Factoring by Using the GCF Factor each polynomial. Check your answer. $-14 x-12 x^{2}$
$-1\left(14 x+12 x^{2}\right)$

8-2 Factoring by GCF

Example 1C: Factoring by Using the GCF Factor each polynomial. Check your answer. $-14 x-12 x^{2}$

Check

8-2 Factoring by GCF

Caution!

When you factor out -1 as the first step, be sure to include it in all the other steps as well.

8-2 Factoring by GCF

Check It Out! Example 1c

Factor each polynomial. Check your answer.

$-18 y^{3}-7 y^{2}$
Both coefficients are negative. Factor out-1.

Find the GCF.
The GCF of $18 y^{3}$ and $7 y^{2}$ is y^{2}.
Write each term as a product using the GCF.
Use the Distributive Property to factor out the GCF..

8-2 Factoring by GCF

Check It Out! Example 1d

Factor each polynomial. Check your answer. $8 x^{4}+4 x^{3}-2 x^{2}$

Find the GCF.

The GCF of $8 x^{4}, 4 x^{3}$ and $-2 x^{2}$ is $2 x^{2}$.
Write terms as products using the GCF as a factor.
Use the Distributive Property to factor out the GCF.
Multiply to check your answer.
The product is the original polynomial.

8-2 Factoring by GCF

To write expressions for the length and width of a rectangle with area expressed by a polynomial, you need to write the polynomial as a product. You can write a polynomial as a product by factoring it.

8-2 Factoring by GCF

Example 2: Application

http: / /my.hrw.com/math11/math06_07/nsmedia/lesson_videos/alg1/play er.html?contentSrc=7548/7548.xml
The area of a court for the game squash is $9 x^{2}+6 x \mathrm{~m}^{2}$. Factor this polynomial to find possible expressions for the dimensions of the squash court.

$$
\begin{array}{rlrl}
\boldsymbol{A} & =\mathbf{9} \boldsymbol{x}^{2}+\mathbf{6 x} & & \text { The GCF of } 9 x^{2} \text { and } 6 x \text { is } 3 x . \\
& =3 x(3 x)+2(3 x) & \begin{aligned}
\text { Write each term as a product } \\
\text { using the GCF as a factor. }
\end{aligned} \\
& =3 x(3 x+2) & & \begin{array}{l}
\text { Use the Distributive Property to } \\
\text { factor out the GCF. }
\end{array}
\end{array}
$$

Possible expressions for the dimensions of the squash court are $3 x \mathrm{~m}$ and $(3 x+2) \mathrm{m}$.

8-2 Factoring by GCF

Check It Out! Example 2

What if...? The area of the solar panel on another calculator is ($2 x^{2}+4 x$) cm ${ }^{2}$. Factor this polynomial to find possible expressions for the dimensions of the solar panel.

$$
A=2 x^{2}+4 x
$$

The GCF of $2 x^{2}$ and $4 x$ is $2 x$.
Write each term as a product using the GCF as a factor.
Use the Distributive Property to factor out the GCF.

8-2 Factoring by GCF

Sometimes the GCF of terms is a binomial. This GCF is called a common binomial factor. You factor out a common binomial factor the same way you factor out a monomial factor.

8-2 Factoring by GCF

Example 3: Factoring Out a Common Binomial Factor

http://my.hrw.com/math11/math06_07/nsmedia/lesson_videos/alg1/player.h

 tml?contentSrc=7549/7549.xml
Factor each expression.

A. $5(x+2)+3 x(x+2)$

$$
5(x+2)+3 x(x+2)
$$

$$
(x+2)(5+3 x) \quad \text { Factor out }(x+2)
$$

$$
\text { B. }-2 b\left(b^{2}+1\right)+\left(b^{2}+1\right)
$$

The terms have a common
binomial factor of $\left(b^{2}+1\right)$.
$\left(b^{2}+1\right)=1\left(b^{2}+1\right)$
Factor out $\left(b^{2}+1\right)$.

8-2 Factoring by GCF

Example 3: Factoring Out a Common Binomial Factor

Factor each expression.
 C. $\mathbf{4 z}\left(z^{2}-7\right)+\mathbf{9}\left(2 z^{3}+1\right)$

8-2 Factoring by GCF

You may be able to factor a polynomial by grouping. When a polynomial has four terms, you can make two groups and factor out the GCF from each group.

8-2 Factoring by GCF

Example 4A: Factoring by Grouping

http: / /my.hrw.com/math11/math06_07/nsmedia/lesson_videos/alg1/playe
r.html?contentSrc=7550/7550.xml

Factor each polynomial by grouping.
Check your answer.
$6 h^{4}-4 h^{3}+12 h-8$
$\left(6 h^{4}-4 h^{3}\right)+(12 h-8) \quad$ Group terms that have a common number or variable as a factor.
$2 h^{3}(3 h-2)+4(3 h-2) \quad$ Factor out the GCF of each group.
$2 h^{3}(3 h-2)+4(3 h-2) \quad(3 h-2)$ is another common factor.
$(3 h-2)\left(2 h^{3}+4\right) \quad$ Factor out $(3 h-2)$.

8-2 Factoring by GCF

Example 4A Continued

Factor each polynomial by grouping. Check your answer.

Multiply to check your solution.

$$
3 h\left(2 h^{3}\right)+3 h(4)-2\left(2 h^{3}\right)-2(4)
$$

$6 h^{4}+12 h-4 h^{3}-8$
$6 h^{4}-4 h^{3}+12 h-8^{\checkmark}$
The product is the original polynomial.

Factoring by GCF

Example 4B: Factoring by Grouping

Factor each polynomial by grouping.

 Check your answer. $5 y^{4}-15 y^{3}+y^{2}-3 y$
Factoring by GCF

Example 4B Continued

Factor each polynomial by grouping. Check your answer. $5 y^{4}-15 y^{3}+y^{2}-3 y$

Check

8-2 Factoring by GCF

Helpful Hint

If two quantities are opposites, their sum is 0 .

$$
\begin{gathered}
(5-x)+(x-5) \\
5-x+x-5 \\
-x+x+5-5 \\
0+0 \\
0
\end{gathered}
$$

8-2 Factoring by GCF

Recognizing opposite binomials can help you factor polynomials. The binomials (5-x) and ($x-5$) are opposites. Notice $(5-x)$ can be written as $-1(x-5)$.

$$
\begin{aligned}
-1(x-5) & =(-1)(x)+(-1)(-5) & & \text { Distributive Property. } \\
& =-x+5 & & \text { Simplify. }
\end{aligned}
$$

$$
=5-x
$$

$$
\text { So, }(5-x)=-1(x-5)
$$

Commutative Property of Addition.

8-2 Factoring by GCF

Example 5: Factoring with Opposites

 http: / /my.hrw.com/math11/math06_07/nsmedia/lesson_videos/alg1/player .html?contentSrc=7551/7551.xml
Factor $2 x^{3}-12 x^{2}+18-3 x$

$$
\begin{aligned}
& 2 x^{3}-12 x^{2}+18-3 x \\
& \left(2 x^{3}-12 x^{2}\right)+(18-3 x) \\
& 2 x^{2}(x-6)+3(6-x) \\
& 2 x^{2}(x-6)+3(-1)(x-6) \\
& 2 x^{2}(x-6)-3(x-6) \\
& (x-6)\left(2 x^{2}-3\right)
\end{aligned}
$$

Group terms.

Factor out the GCF of each group.
Write $(6-x)$ as $-1(x-6)$.
Simplify. $(x-6)$ is a common factor.
Factor out ($x-6$).

8-2 Factoring by GCF

Check It Out! Example 5b

Factor each polynomial. Check your answer.

$$
8 y-8-x+x y
$$

Group terms.
Factor out the GCF of each group.
$(y-1)$ is a common
factor.
Factor out (y-1).

